198. 打家劫舍

题目描述:

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

解题分析及思路:

如果房屋数量大于两间,应该如何计算能够偷窃到的最高总金额呢?对于第 i (i>2) 间房屋,有两个选项:

  • 偷窃第 k 间房屋,那么就不能偷窃第 i−1 间房屋,偷窃总金额为前 i−2 间房屋的最高总金额与第 k 间房屋的金额之和。
  • 不偷窃第 k 间房屋,偷窃总金额为前 i−1 间房屋的最高总金额。

在两个选项中选择偷窃总金额较大的选项,该选项对应的偷窃总金额即为前 i 间房屋能偷窃到的最高总金额。

用 dp[i] 表示前 i 间房屋能偷窃到的最高总金额,那么就有如下的状态转移方程:dp[i]=max(dp[i−2]+nums[i],dp[i−1])

边界条件为:

  • dp[0]=nums[0] 只有一间房屋,则偷窃该房屋
  • dp[1]=max(nums[0],nums[1]) 只有两间房屋,选择其中金额较高的房屋进行偷窃

最终的答案即为 dp[n−1],其中 n 是数组的长度。

那么对应动态规划解法:

  1. 定义状态: 我们定义状态 dp[i] 表示偷窃到第 i 间房屋时的最大金额。

  2. 找到状态转移方程: 在每一步,我们有两个选择:偷窃当前房屋或者不偷窃。如果偷窃当前房屋,那么最大金额为 dp[i-2] + nums[i];如果不偷窃当前房屋,最大金额为 dp[i-1]。因此,状态转移方程为:

dp[i]=max(dp[i2]+nums[i],dp[i1])
  1. 初始化: 初始化时,我们将第一个房屋的金额作为初始状态,即 dp[0] = nums[0]。

  2. 递推求解: 通过状态转移方程,我们逐步求解每个子问题,迭代数组,计算每个位置的最大金额。

  3. 计算最终结果: 最终结果为 dp[n-1],其中 n 为房屋的数量。

实际中,结果集的第i项只与第 i−1 和第 i−2 项有关,并且结果不取决于其他已经遍历过的元素,所以可以将nums数组充当dp数组进行操作,当然你也可以用两个变量来保存。

让我们通过一个简单的例子来说明这个思路:

假设给定房屋金额数组 nums = [2, 7, 9, 3, 1]。

  1. 初始化:dp[0] = 2。
  2. 对于第二间房屋,有两个选择:偷窃或不偷窃。选择较大者,更新 dp[1] = max(2, 7) = 7。
  3. 对于第三间房屋,同样有两个选择:偷窃或不偷窃。选择较大者,更新 dp[2] = max(dp[0] + nums[2], dp[1]) = max(2 + 9, 7) = 11。
  4. 依此类推,我们逐步更新 dp 数组。
  5. 最终结果为 dp[4],即 dp[4] = max(dp[3], dp[2] + nums[4]),表示小偷在最后一间房屋时的最大金额。

通过这个思路,我们有效地避免了相邻房屋同时被偷窃的情况,最终得到了一夜之内能够偷窃到的最高金额。

func rob(nums []int) int {
	max := func(i, j int) int {
		if i > j {
			return i
		}
		return j
	}
	for index := range nums {
		if index == 1 {
			nums[index] = max(nums[index], nums[index-1])
		} else if index > 1 {
			nums[index] = max(nums[index-2]+nums[index], nums[index-1])
		}
	}
	return nums[len(nums)-1]
}

复杂度:

  • 时间复杂度:O(n),其中 n 为房屋的数量。只需遍历一次数组。
  • 空间复杂度:O(1),只使用常数额外空间。

执行结果:

  • 执行耗时:0 ms,击败了100.00% 的Go用户
  • 内存消耗:1.9 MB,击败了70.13% 的Go用户

通过次数 1.1M 提交次数 2M 通过率 55.5%

Related Posts

1026. 节点与其祖先之间的最大差值

## 题目描述:给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值 V,其中 V = |A.val - B.val|,且 A 是 B 的祖先。(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)示例 1: ![](/img/leetcode/1026节点与其祖先之间的最大差值/tmp-tre

read more

1038. 从二叉搜索树到更大和树

## 题目描述:给定一个二叉搜索树 root (BST),请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。提醒一下, 二叉搜索树 满足下列约束条件:- 节点的左子树仅包含键 小于 节点键的节点。 - 节点的右子树仅包含键 大于 节点键的节点。 - 左右子树也必须是二叉搜索树。*示例 1:***![](/img/leetcode/

read more

105. 从前序与中序遍历序列构造二叉树

## 题目描述:给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。示例 1: ``` 输入: preorder = [3,9,20,15,7], inorder = [

read more

106. 从中序与后序遍历序列构造二叉树

## 题目描述:给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。示例 1: ``` 输入:inorder = [9,3,15,20,7], postorder

read more

109. 有序链表转换二叉搜索树

## 题目描述:给定一个单链表的头节点 head ,其中的元素 按升序排序 ,将其转换为高度平衡的二叉搜索树。本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差不超过 1。示例 1: ``` 输入: head = [-10,-3,0,5,9] 输出: [0,-3,9

read more

114. 二叉树展开为链表

## 题目描述:给你二叉树的根结点 root ,请你将它展开为一个单链表:- 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。 - 展开后的单链表应该与二叉树 先序遍历 顺序相同。示例 1: ``` 输入:root

read more