55. 跳跃游戏

题目描述:

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

解题分析及思路:

方法:贪心

思路:

以贪心的思想不断更新每次能够跳到的最远位置:

  • 若跳到某一位置,该位置是能够跳到的最远距离,并且此时能够跳跃的最大长度为0,则无法跳到最后一个
  • 否则,将一直跳跃直到所有元素遍历完成,最后返回true
func canJump(nums []int) bool {
	var max = 0
	for index := 0; index < len(nums)-1; index++ {
		// 最远达到index处,并且无法再次跳跃
		if max == index && nums[index] == 0 {
			return false
		}
		if index+nums[index] > max {
			max = index + nums[index]
		}
	}
	return max >= len(nums)-1
}

复杂度:

  • 时间复杂度:O(N)
  • 空间复杂度:O(1)

执行结果:

  • 执行耗时:38 ms,击败了92.07% 的Go用户
  • 内存消耗:6.7 MB,击败了75.46% 的Go用户

通过次数 1.1M 提交次数 2.5M 通过率 43.5%

Related Posts

1026. 节点与其祖先之间的最大差值

## 题目描述:给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值 V,其中 V = |A.val - B.val|,且 A 是 B 的祖先。(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)示例 1: ![](/img/leetcode/1026节点与其祖先之间的最大差值/tmp-tre

read more

1038. 从二叉搜索树到更大和树

## 题目描述:给定一个二叉搜索树 root (BST),请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。提醒一下, 二叉搜索树 满足下列约束条件:- 节点的左子树仅包含键 小于 节点键的节点。 - 节点的右子树仅包含键 大于 节点键的节点。 - 左右子树也必须是二叉搜索树。*示例 1:***![](/img/leetcode/

read more

105. 从前序与中序遍历序列构造二叉树

## 题目描述:给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。示例 1: ``` 输入: preorder = [3,9,20,15,7], inorder = [

read more

106. 从中序与后序遍历序列构造二叉树

## 题目描述:给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。示例 1: ``` 输入:inorder = [9,3,15,20,7], postorder

read more

109. 有序链表转换二叉搜索树

## 题目描述:给定一个单链表的头节点 head ,其中的元素 按升序排序 ,将其转换为高度平衡的二叉搜索树。本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差不超过 1。示例 1: ``` 输入: head = [-10,-3,0,5,9] 输出: [0,-3,9

read more

114. 二叉树展开为链表

## 题目描述:给你二叉树的根结点 root ,请你将它展开为一个单链表:- 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。 - 展开后的单链表应该与二叉树 先序遍历 顺序相同。示例 1: ``` 输入:root

read more